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Fractal Behavior in Trapping and Reaction: 
A Random Walk Study 

J. Klafter,  1 A .  B iumen ,  2 and G. Z u m o f e n  3 

We investigate the trapping of a random walker in fractal structures (Sierpinski 
gaskets) with randomly distributed traps. The survival probability is determined 
from the number of distinct sites visited in the trap-free fractals. We show that 
the short-time behavior and the long-time tails of the survival probability are 
governed by the spectral dimension d. We interpolate between these two limits 
by introducing a scaling law. An extension of the theory, which includes a 
continuous-time random walk on fractals, is discussed as well as the case of 
direct trapping. The latter case is shown to be governed by the fractal 
dimension d. 

KEY WORDS: Trapping; random walk; number of distinct sites visited; 
continuous-time random walk; Sierpinski gaskets; compact exploration. 

1. INTRODUCTION 

Random walks in lattices with randomly distributed trapping centers have 
been studied extensively "'2) with applications to problems such as mobile 
defects in crystals, (3) electronic and vibrational  energy transfer, (4-7) and 

nuclear magnetic resonance.(S) Recently, models of self-attracting 
polymers (9) and for the Wi l l i ams-Wat t s  form of dielectric relaxation (~~ have 

also been mapped onto a trapping picture. All these studies have concen- 
trated on models based on regular lattices. It has been recognized, however, 
that many  structures in condensed matter physics appear to be of fractal 

nature (self-similar). "~) Examples are: linear and branched polymers, (12) 
percolation clusters at criticality, (~3'14) aggregates constructed by diffusion- 

limited growth, (~5~ epoxy resins, "6~ and porous surfaces. ~17) It would be of 
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much interest therefore to extend the existing theories for regular lattices also 
to fractal structures. 

In this paper we address the problems of trapping and reaction in 
fractals using the Sierpinski gaskets. ~11) We focus on the decay functions and 
on the corresponding decay rates. We note that recent experiments on 
reactions of optical excitations in mixed molecular crystals have been inter- 
preted in terms of migration and trapping in fractals. (18,19) Moreover, the use 
of trapping of optical excitations for the characterization of polymer 
morphology has become widespread in recent years ~2~ and we believe that 
similar methods can be used for characterizing other complex structures. 

In Section 2 we analyze the decay laws due to trapping in terms of the 
number of distinct sites visited. We study the mean number of distinct sites 
visited after n steps, Sn, and the variance tr~ in Sierpinski gaskets and 
compare their values with those for regular lattices. This analysis is 
restricted to small and moderately large number of steps (short and moderate 
times). In Section 3 we extend these calculations to a very large number of 
steps (very long times). A scaling law is then proposed to describe the decay 
functions for all times and all trap concentrations. Section 4 compares the 
trapping results derived in previous sections with the direct transfer 
mechanism. It is demonstrated that different processes depend on different 
dimensions of the fractal. In Section 5 we relax the condition of a simple 
random walk with a fixed site-to-site stepping time by introducing a 
distribution of stepping times in the framework of the. continuous-time 
random walk. This modification strongly affects the behavior due to 
trapping. 

2. TRAPPING IN THE SHORT AND MODERATE TIME REGIMES 

We consider a random walker in a fractal structure (Sierpinski 
gasket) tll) in which the traps are distributed randomly, occupying its sites 
with probability p. The microscopic transfer rates of the walker from a site 
to its neighboring sites are assumed to be equal. Furthermore, the walker 
gets trapped at the first encounter of a trap. 

For a particular realization of the random walk on the trap-free fractal, 
let R n denote the number of distinct sites visited in n steps. Note, as is usual 
in disordered systems, the difference from the regular lattice: here the 
stochastic variable R n depends both on the starting point on the gasket, and 
on the sequence of directions of the steps; for a regular lattice the starting 
point is irrelevant. For the same realization of the walk let F n denote the 
probability that trapping has not occurred up to the nth step in the ensemble 
of lattices doped with traps: 

F n = (1 - - p )  R n - I  (1) 
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assuming the origin of the walk not to be a trap. The measurable survival 
probability is q~n, the average of F n over all realizations of the random 
walk (4'7'2a'22) and over all starting points 

~n = ( F n ) =  ((1 _p )R . -1 )  (2) 

Introducing 2 = - - l n ( 1 - p ) ,  Eq. (2) allows a straightforward cumulant 
expansion 

~ .  = e~(e-zR") =- eZ~n (3) 

with 

q5 n = exp Ki..(--2)J/j! (4) 

where the Kj,,n are the cumulants of the distribution of R n. As an example, 
the first two cumulants are 

and 

K 1 ,  n = ( t ~ n )  ~ S n (5) 

2 K2,. = (R2n) -- (Rn) 2 ------ a n (6) 

where S .  and o2. are the mean and the variance of R n. 
The knowledge of all cumulants allows the exact determination of the 

decay function q~. via Eqs. (3) and (4). In general, however, one has to 
restrict oneself to the first cumulants, since the distribution of R.  is not 
known in great detail: 

The expression for N = 1 

aS,,. = exp( -~S. )  (8) 

has been advanced in many areas(4'6'1s'23); in the random walk field it 
corresponds to the first-passage-time approximation; C6) in the fractal field it 
was recently used by de Gennes. ~z3) For N = 2 one obtains from Eq. (7) the 
form (v) 

q52, . -- exp ( -2S .  + 22o2./2) (9) 

Let us point out that for three-dimensional regular systems Eq. (8) was 
found to be a good approximation over the main portion of the decay, and 
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that Eq. (9), which includes the variance, turned out to be very good both for 
three- and for two-dimensional regular lattices. On the other hand, in the 
one-dimensional regular case the cumulant expansion, Eq. (7), is very slowly 
convergent, so that at least N = 4 is needed in order to describe well the 
decay over the first two orders of magnitude. (v) 

According to formal chemical kinetics one obtains from q~, the decay 
rates k n = (q~,_~-  q~,)/q~,, the discrete version of k ( t ) = - ~ ( t ) / ~ ( t ) .  The 
reaction scheme described here is 

A + B  k(t)> B; A(t  = O) < B ( t  = 0 )  (10) 

where B represents the traps. Equation (10) serves as a suitable model for 
describing energy transfer processes. The more general bimolecular case 
A + B ~ C will be discussed elsewhere. 

We have simulated a series of different random walks on Sierpinski 
gaskets. For an embedding Euclidean space of dimension d the fractal 
dimension of the gasket is (ll) d = ln(d + 1)/ln 2 and its spectral dimension is 
d =  2 ln(d + 1)/ln(d + 3), so that d )  d~> ~/(13,14,24) In the case that we are 
interested in, trapping of a walker, the fundamental quantity is the spectral 
dimension d (vide infra and Refs. 13 and 14). For these Sierpinski gaskets 
the spectral dimension is always less than 2; this allows us to analyze the 
performance of the cumulant expansion and the properties of the walker in 
the range below aV= 2. We have chosen gaskets of Euclidean dimension 
d = 2 ,  d =  3, d =  4, and d =  6 which correspond to the spectral dimensions 
d =  1.365, t t =  1.547, d =  1.654, and d =  1.771, respectively. The gaskets 
were generated iteratively, and were chosen to contain some 10,000 sites. 
Some 1000 to 5000 realizations of the walks were performed and both 
starting points and displacements were stochastically chosen using the 
random number generator RN1 of the ETH Computer Center. 

In Fig. 1 we present the results for S ,  in the range 0 ~< n ~< 1000 for the 
four gaskets; we have also included S ,  for the linear chain ( d =  1). The 
numerical results for S,  were fitted to 

S , = a n  ~ (11) 

with a = d / 2 .  On the scale of the figure the fit is excellent, and is 
indistinguishable from the numerical results, even for small n. Thus, for the 
gaskets, as in the one-dimensional regular case, the first term of the 
asymptotic expansion of S,  gives an adequate description for practically 
all n. The fit gives for the gaskets a = 1.295 and a = 0 . 6 8 5  for d = 2 ;  
a =  1.248 and a = 0 . 7 6 2  for d = 3 ;  a =  1.205 and a =0.809 for d = 4 ;  and 
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Fig. 1. Mean number of distinct sites visited in n steps, S,, for four Sierpinski gaskets 
(d= 1.365, aT= 1.547, d=  1.654, if= 1.771) as well as for the linear chain (aT= 1). The points 
are the simulation results and the lines are the fit to Eq. (11). 

a = 1.138 and a = 0.865 for d = 6. The result for a for d = 2 agrees with the 
result of  Ref. 24. The difference between 2a and d is very small. 

2 the results are presented in Fig. 2. We have For the second cumulant a ,  
fitted the numerical curves to the law 

a2, = bn ~ (12) 

since there is strong evidence that this should be the leading term of the 
corresponding expansion, with /~ being f l = d =  2a. ~24'z5) As may be seen 
from Fig. 2 the fit, Eq. (12), is very satisfactory. We obtain b = 0.148 and 
/~= 1.363 for the gasket in d =  2, b = 0 . 0 6 0  and f l =  1.539 for d =  3, 
b = 0 . 0 5 3  and f l = 1 . 6 0  for d - - 4 ,  and b - - 0 . 0 4 1  and ] ? = 1 . 6 7  for d = 6 .  

an /S ,  should Equations (11) and (12) imply that for our fractals the ratio 2 z 
approach a constant independent of  n, b/a 2. b/a 2 equals 0.088 for d =  2, 
0.039 for d = 3, 0.037 for d = 4 and 0.032 for d = 6. These values decrease 
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2 Fig. 2. The variance of the distribution of distinct sites visited in n steps, a,.  All symbols 
are as in Fig. 1 and the simulation results are fitted to Eq. (12). 

monotonica l ly  wi th  increasing d, which means that  the dis tr ibut ion of  R,, 

gets narrower  for larger d. 
How are these stat is t ical  propert ies  in fractals  related to the 

corresponding propert ies  in regular  latt ices? The asymptot ic  behaviors  of  S n 
2 for regular  lattices are well known: (1'2) and a n 

2 ..~ 4(ln 2 - 2/~r)n, d =  1, S n = a n  1/2 + . . . ,  cl n 

z n2/ln 4 n, d = 2 ,  S , = a n / l n n + . . . ,  cr,-.~ 

z d = 3, S n = an + , . . ,  o ,  ..~ n ln n, 

2 2 a,, /S, ,  = const  (13a) 

2 2 (13b) an/Sn  ~ 1/ln 2 n 

2 2 a n / S ,  ~ In n /n  (13c) 

It is clear that  for the family of  the Sierpinski  gaskets  (aTe< 2) the moments  
of  the dis t r ibut ion of  dist inct  sites visited are si tuated between d - -  1 and 
d = 2, Eqs. (13a) and (13b), respectively.  The values of  b/a  2 compare  well 
with the exact  result for the l inear chain,  g =  1, where a2n/S2 n = 0.088. For  

2 2 ____~ two- and three-dimensional  regular  lattices G , / S  n 0 for large n, Eqs. (13b) 
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and (13c). One may conjecture that for fractals the spectral dimension aT= 2 
replaces the Euclidean dimension d = 2 as the marginal dimension for the 
random walker; so that we expect (24~ that asymptotically S n ~ n  and 
b/a  2 ~ 0 for ff~> 2. 

The decay laws q~, are given in Fig. 3 for i f=  1.547 and several values 
of the trap concentration (p = 1%, 3%, 10%, and 30%). The ~ ,  are plotted 
logarithmically versus n; the full curves correspond to the exact decay, 
whereas the broken lines are the approximating forms ~l,~ and ~2,n, 
Eqs. (8) and (9). For the plot the formulas Eqs. (1l) and (12) for S,  and a~ 
were used, obtaining thus approximate expressions with a minimal number of 
parameters. For all trap concentrations the decays are clearly nonex- 

ponentiaI .  We find a behavior much reminiscent of the decay laws for the 
square lattice: the mean number of sites visited, S~, does not describe the 

2 considerably improves the decay well, whereas inclusion of the variance cr~ 
agreement. (7~ We note ~26~ that the agreement is better for the higher- 
dimensional gaskets, a fact not surprising when remembering the one- 
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Fig. 3. 'The survival probability ~ .  for various trap concentrations p on a Sierpinski gasket 
i f=  1.547, where n is the number of steps. The full lines denote the simulation data, whereas 
the dashed lines are the ~1,. and ~2,. approximations, Eqs. (8) and (9), respectively. 
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dimensional case, where four cumulants are necessary for a good description 
of the decay over two orders of magnitude. Thus the decay laws for the 
gaskets interpolate nicely between the linear chain and two-dimensional 
lattices, a result which is independent of the fractal dimension d. 

The dynamical quantities such as the moments of the distribution of 
distinct sites visited and also the decay, show a behavior which is situated 
between that which obtains for one- and for two-dimensional regular lattices. 
The unifying aspect is the compact exploration of the geometrical structures 
by the walker, a concept stressed by de Gennes. ~23) As in the one- 
dimensional case, this leads to relations between the moments of the 
distributions, relations which appear from our numerical simulations. C26) 

3. L O N G - T I M E  BEHAVIOR 

In the previous section we have determined the survival probabilities q~, 
from the distribution R,  of distinct sites visited. We have concentrated on the 
short and moderately long times. In order to study the long-time regime we 
will have to treat the decay in a different manner. 

As mentioned earlier, on fractal structures (d < 2) the exploration is 
compact. (23) Already visited sites have a high probability of revisitation, so 
that, given a compact volume V which contains the walker, most points 
inside V are visited before a new site outside the volume is explored. Thus, if 
there is a trapping site inside V and the exploration is compact the survival 
probability is negligible. 

For a given trap distribution around the origin of the walk there is a 
maximal trap-free volume V. Following Lifshitz, C2~) Balagurov and Vaks, ~28) 
and others ~29-3z) we observe that the decay function is determined by the 
solution of the diffusion equation in V with absorbing boundaries, so that the 
long-time behavior is given by the lowest eigenvalue e(V), and goes as 
exp[-te(V)].  The probability that the volume is trap-free is 

(1 _p)V ~ e-pV (14) 

where we take the trap concentration to be small. To Eq. (14) corresponds 
the normalized Hertz distribution p exp(-pV).  Averaging the decay over all 
compact volumes V one has asymptotically, for large t: 

q~(t) ~ (exp[- te(V)])v ~ fpe  pVe-tam dV (15) 

In Eq. (15) the dynamical decay law is expressed in terms of the geometrical 
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volumes V; this allows now for fractals a straightforward scaling analysis. 
The volume of a fractal changes under dilatation by L as (11) 

V(L)  ~ LaV(1) = Cx L a  (16) 

On the other hand, phonon modes scale as (13'14'z4) 

o0(11") ~ L -a/aco(1) (17) 

and for the eigenvalues of the diffusion (or Schr6dinger) equation one has 
the scaling: 

e(V) ~ L - 2 d / a s ( l )  = CzL -2a/a (18) 

The exponent of L is by a factor of 2 larger than in Eq. (17), owing to the 
first (instead of second) time differential operator of the underlying 
differential equation. Inserting Eqs. (16) and (18) into Eq. (15) one obtains 

gs(t) ~ f exp[-f(L)]  dL (19) 

with, up to logarithmic corrections: 

f ( L )  = pC~L a + tC2L-2y/ff (20) 

The leading term of Eq. (19) follows through a saddle-point analysis and is 
proportional to exp[-f(Lmin) ], where Lmi n is the minimum of f (L) ;  
corrections may be obtained by extensions of Watson's lemmaJ 33) From 
Eq. (20) 

so that 

Lint n = (2tCffpffC1) ~'/~ with a - ff/(aT + 2) (21) 

�9 (t) ~ exp [--f(Lmin) ] ~ exp [ -C  3 pZ/(d+ 2)t&(a+ 2)] (22) 

We note the disappearance of d from the final result, Eq. (22), which 
depends only on the spectral dimension ~ Equation (22) is a generalization 
of the long-time survival probability in Euclidean space~ZS-32); it reduces to 
the Euclidean result by replacing ff by d. In fact, the exact Euclidean version 
of Eq. (22) is valid for all trap concentrations; thus p in Eq. (22) is 
substituted by/l  =--ln(1 - p )  [see Eq. (3)]. 

Now that we have derived the short-time decay laws in Sierpinski 
gaskets [if<2, Eqs.(9), (11)], and (12), and the long-time decay law, 
Eq. (22), we propose a scaling law for the survival probability q~,. This 
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interpolates between the two time regimes. Using Eqs. (3), (4), and (9) and 
an extension of Eq. (22) to all p (by introducing )l,) we infer the following 
expression: 

with 

I~ n = earn (23) 

~,, = exp [-gOtna/2)] (24) 

where we transformed time t in Eq. (22) into number of steps n (t = nr, 
where r is the stepping time), g(x) is a universal function which reduces in 
limiting cases to 

tx  x<~ 1 (25) 
g(x)'., fx2/(a+2 ) x >  1 

In order to check this scaling assumption we plot in Fig. 4 our results for �9 n 
as a function of 221an for three gaskets i f =  1.365, i f =  1.547, and i f =  1.771. 

Fig. 4. 

10-2 15 

k'i,;\,, + o.os 
 o.o, 

Io -7 % ~ % 

' 1 o ~  ,o 
+X , ~ \  

i0 -20 , ,* \+ ~ \, 

I0 I0 a IO s 
# /dn  

~ 

Scaling behavior of 0~. in O~ is plotted vs. 2Zmn for three gaskets (d= 1.365, 
d=  1.547, and d=  1.771). 
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We see that for each of these spectral dimensions Eq. (24) describes the 
survival probability relatively well over many orders of magnitude of ~ , .  
For a more detailed analysis see Ref. 35. Similar behavior has been recently 
suggested for one-dimensional ( d =  1) trapping. (35'36) For a square lattice 
( d =  2) such a scaling proposal fails. (35) One concludes then that Eq. (24) 
fits the decay laws for d < 2 corresponding to the compact exploration case. 

In order to find where the asymptotic behavior given by Eq. (22) is 
reached we performed numerical simulations (34) on a Sierpinski gasket with 
d =  1.365. However, in the range 10-2~  ~ ,  ~ 1 we could not fit the results 
to Eq. (22), q)(t) ~ exp(-et ~) with ct = d/(d + 2). For all trap concentrations 
we find the same form but with a larger than the predicted one. We have also 
studied regular lattices, (34) where one expects the same expression as in 
Eq. (22) to hold, with d replaced by d. The regular cases also display similar 
behaviors: For example, in two dimensions we could not observe the 
expected long-time tails (a = 1/2) over many orders of magnitude of the 
survival probability. 

4. D IRECT T R A P P I N G  

A different mechanism for trapping of an excitation in fractals is the 
direct, one-step trapping. In this case an excited donor decays to randomly 
distributed acceptors in a structure of fractal dimension d. 

Direct trapping in regular lattices has been studied both 
theoretically ~5'37'38) and experimentally. ~5'38) Also charge recombination in 
amorphous materials has been described in the same framework. (39'4~ Here 
we generalize the direct trapping results to include fractal structures. 

We start our considerations by assuming that the donor and the 
acceptors are embedded in a fractal. The survival probability ~U(K; t) of the 
excited donor (assumed at the origin) for a fixed acceptor configuration K is 
exponential(37) 

7~(K;t)=exp [--t ~ W(Rj) = M exp[-tW(Rj)] (26) 
j ~ K  j ~ K  

where W(Rj) denotes the transfer rate to an acceptor at position Rj and the 
sum and product extend over all acceptors. As an example we choose the 
multipolar interactions: 

W(Rj) = ams (27) 
Rj 

The quantity of experimental interest is not g~(K; t) but its ensemble 
average over all possible configurations of the acceptors distributed on the 
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fractal, ~(t), where 7t(t)= (~ (K ; t ) )  K. If the fractal sites are randomly 
occupied with probability p one obtains from Eq. (26) (5,37) 

~u(t) = 1-I' {1 --p + p  exp[-tW(R/)]} (28) 
i 

Here the product extends over all sites of the fractal structure with the 
exception of the donor site. This means that the ensemble average reproduces 
the details of the structure (it also depends on the donor site) and in the 
process of the direct transfer the whole fractal structure is being sampled. 

For low density of acceptors, p ~ 1, an approximate form to 7~(t) can 
be derived from Eq. (28). Distinct from Eq. (28) this form does not depend 
anymore on the position of the donor. In the continuous description one 
obtains 

T(t)_~ exp ( - p f  d R p ( R ) { 1 -  exp[tW(R)]}) (29) 

where p(R) is the density of sites on the fractal structure(l~): 

p(R) =po Ra-d (30) 

where P0 is a proportionality constant. Equation (29) is then, for isotropic 
interactions W(R ), 

~P(t)~-exp (-ppodVa; dR Ra-l{1-expl-tW(R)]})  

where V a is the volume of the d-dimensional unit sphere. We now insert the 
form (27) into Eq. (31) and obtain for multipolar interactions (4~) 

~g(t) = exp(-pAt a/S) (32) 

where A is time independent. Unlike the decay laws derived in previous 
sections for a random walker and which depend solely on the spectral 
dimension d, here we encounter a situation where the decay is given by the 
fractal dimension d. Thus, for each mechanism a different dimension of the 
fractal is decisive. In this sense, trapping on fractals shows a richer behavior 
than in the case of regular lattices where d = d = a 7. 

Equation (32) is an extension of a known result for Euclidean 
d i m e n s i o n  d (37'38) to fractal dimension d (by replacing d by d). Experimen- 
tally, the change from the direct to the indirect mechanism may be 
monitored by changing the concentration of the molecules involved. 
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5. CONTINUOUS-TIME RANDOM WALK (CTRW) ON FRACTALS 

We return to the case of trapping of a random walker, Sections 2 and 3. 
However we now relax the condition used in these sections that the walker 
hops from site to site with afixed stepping time. We introduce a distribution 
of stepping times q/(t) (42) which mimics an additional disorder superimposed 
on the geometric (fractal) disorder. Thus, we encounter a case where two 
independent random processes affect the survival probability due to trapping. 

Introducing the distribution of stepping times q/(t) in the framework of 
the CTRW has been proven to be a powerful approach toward the 
understanding of transport in amorphous materials. (43) Generally the 
distribution of stepping times is a function in which spatial and temporal 
processes are coupled. (44'45) Here we assume a decoupled version of the 
CTRW. 

In order to introduce the continuous-time aspect to the trapping 
problem one has to translate the number of steps of Section 2 into time. Let 
Xn(t) be the probability of having performed exactly n steps in time t, then 
the survival probability after time t is (21'47) 

q)(t) = ~ qgnZ~(t ) (33) 
n 

where q~, is given by Eq. (2). In our model all steps occur with a common 
stepping time distribution ~,(t), so that X,(t) can be obtained from ~'(t). We 
denote by f ( u )  the Laplace transform o f f ( t ) ; f ( u ) ~ - f [ f ( t ) ] ,  then (42'46) 

Z,(u) = [~,(u)]"[1 - q/(u)]/u (34) 

From Eqs. (33) and (34) the Laplace transform of ~(t)  in the CTRW 
framework is given by 

�9 (u) - 1 - ~,(u) ~ q~,[~'(u)]" (35) 
U n 

~(t)  strongly depends on the nature of the distribution of stepping times 
~,(t). As discussed by us before (46'47) two cases are of particular interest. In 
the first case all moments rj = f flq/(t) dt of ~,(t) are finite; then for small u 

~(u) = 1 - -u r j  + -.. (36) 

In the second case, ~(t) has a long-time tail (43) q/(t)~ t -~-~ (0 < fl < 1) so 
that J" tq/(t) dt diverges. In this case 

= 1 - r 0  - + . . -  (37) 

822/36/5-6-5  
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F(x)  is the Euler gamma-function. As an example for the first case where all 
moments exist w e  choose (46'47) 

d7  ~ 
~(t) = dt (38) 

where ~u(t) = e -Atr (0 < ~ < 1). ~g(t) describes the probability of the walker 
to remain on the site occupied at time t = 0, while 1 - ~'(t) is the probability 
of transfer during time t to other available sites. For more detailed 
discussions of Eq. (38) see Refs. 21, 44, and 46--48. Figure 5 represents the 
survival probability r in the CTRW framework with ~(t) as in Eq. (38). 
q~(t) has been obtained from the inverse Laplace transform of Eq. (35), (48) 
where q~, were taken from the calculations in Section 2 for aT= 1.36. 7 has 
been given the value 0.14 so that the corresponding ~(t) is broad enough to 
demonstrate the effect of the CTRW. ~47) The dashed curves in the figure 
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Fig. 5. Decay laws ~(t)  for walks on a gasket ( d =  1.36) with ~ = - - ~ ,  ku(t)=e-~tr ,  
7=0 .14 .  The trap concentrations are as indicated. The dashed curves are the decay laws 
which obtain for a fixed stepping time. Also plotted is the corresponding ~u(t). 
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describe the decay laws in the fractal with a fixed stepping time. The full 
curves give q~(t) in the presence of ~,(t). One sees that for short times q/(t) 
does not change q~(t); however, at longer times the decay laws are much 
slower owing to the broad distribution of stepping times. The fractal nature 
is completely masked by the temporal disorder. It is interesting to note that 
for long times the full curves are parallel to each other and to ~u(t) of 
Eq. (38). This is due to an  avoided crossing effect(47): trapping cannot be 
more efficient than the probability of remaining on the initial site, ~(t). 
Thus, for long times q~(t)~ ~ ( t ) =  e -Atr. For the stepping time distribution 
with long-time tails ~ t ( t ) ~ t  -~-~ we find (48) that q~(t) deviates from the 
regular fractal behavior even earlier than in Fig. 5. In this case for long times 
q~(t) ~ l i t  ~ which again corresponds to the avoided crossing argument. The 
same result was obtained for regular lattices. (46'47) Namely, for broad ~,(t) 
the decay due to trapping is determined by the distribution of stepping times 
rather than by the fractal dimensions. 

The CTRW version of the mean number of distinct sites visited in a 
fractal (Sierpinski gasket) can be readily obtained from v/(t) as in Eq. (33) 

S( t )  = ~ Snxn(t) (39) 
n 

~ 

where S, = an a/2 (see Section 2). For Eq. (39) we have derived the following 
results.(48) With q/(t) having all moments the asymptotic behavior of S(t)  is 

S( t )  ~ t a/2 (40) 

which preserves the fractal nature of S,  in Section 2. However, for the ~'(t) 
of Eq. (37) 

S(t)  ~ t ~a/z, 0 </3 < 1 (41) 

Here the exponent shows the effect of subordination: the two processes 
behave asymptotically in a multiplicative manner. In the compact case, 
d <  2, Eqs. (40) and (41) are related to the mean-squared displacement of 
the walker (R2(t))  and therefore to the diffusion coefficient in the fractal 
structures(13'14) 

(R 2(t)) ~ IS(t)] 2/d (42) 

From Eqs. (40) and (41) we then have 

(R ~(t)) ~ t ~/a (43a) 

and 

(R z(O ) ~ t ~a/a (438) 
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respectively. Equat ion (43b) is a generalization of the Alexander -Orbach  ~13) 

result for broad distributions of stepping times. In this case the diffusion does 
not depend only on d and d for the given structure, but  is sensitive to the 

disorder parameter// .  We note that in this case the survival probabili ty 
cI)(t) ~ 1/t  ~ is related to S( t )  in an interesting way: 

1 
q~(t) ar < 2 (44a) 

lS(t)l 2/a' 

1 
q~(t) ~ S ( t )  ' aT> 2 (44b) 
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